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Abstract. Using Stokes flow between eccentric counter-rotating cylinders as a prototype for
bounded nearly parallel lubrication flow, we investigate the effect of a slender recirculation region
within the flow field on cross-stream heat or mass transport in the important limit of high Péclet
number Pe where the ‘enhancement’ over pure conduction heat transfer without recirculation is
most pronounced. The steady enhancement is estimated with a matched asymptotic expansion
to resolve the diffusive boundary layers at the separatrices which bound the recirculation region.
The enhancement over pure conduction is shown to vary as €'/? at infinite Pe, where €'/2 is the
characte/ristic width of the recirculation region. The enhancement decays from this asymptote
as Pe™1/2,
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1. Introduction

The use of integral equations to solve ‘exterior’ problems in linear acoustics, i.e. to solve
the Helmholtz equation (V? + k?)¢ = 0 outside a surface S given that ¢ satisfies certain
boundary conditions on S, is very common. A good description is provided by Martin
(1980). Integral equations have also been used to solve the two-dimensional Helmholtz
equation that arises in water-wave problems where there is a constant depth variation.
The problem of wave oscillations in arbitrarily shaped harbours using such techniques has
been examined (see for example Hwang & Tuck 1970; Lee 1971; Figer, Najarro, Gilmore,
et al. (2002)).

In a recent paper Linton & Evans (1992) have shown how radiation and scattering
problems for vertical circular cylinders placed on the centreline of a channel of finite
water depth can be solved efficiently using the multipole method devised originally by
Ursell (1950). This method was also used by Callan, Linton & Evans (1991) to prove the
existence of trapped modes in the vicinity of such a cylinder at a discrete wavenumber
k < m/2d where 2d is the channel width.

Many water-wave/body interaction problems in which the body is a vertical cylinder
with constant cross-section can be simplified by factoring out the depth dependence.
Thus if the boundary conditions are homogeneous we can write the velocity potential
é(z,y,2,t) = Re{p(z,y) cosh k(z + h)e” !} where the (z,y)-plane corresponds to the
undisturbed free surface and z is measured vertically upwards with z = —h the bottom
of the channel.
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Subsequently Callan et al. (1991) proved the existence of, and computed the wavenum-
bers for, the circular cross-section case. It should be noted however that experimental
evidence for acoustic resonances in the case of the circular cylinder is given by Bearman
& Graham (1980, pp. 231-232).

Koch (1983) provided a theory for determining the trapped-mode frequencies for the
thin plate, based on a modification of the Wiener—Hopf technique. Further interesting
results can be found in Williams (1964) and Dennis (1985).

The use of channel Green’s functions allows the far-field behaviour to be computed in
an extremely simple manner, whilst the integral equation constructed in § 3 enables the
trapped modes to be computed in §4 and the scattering of an incident plane wave to be
solved in §5. Appendix A contains comparisons with experiments. The Galactic Center
region proves to be an area very rich in WR stars. The VIIth Catalogue lists within 50 pc
from the Galactic Center 15 WNL and 11 WCL stars, at near-IR wavelengths discovered
by Krabbe, Genzel, Eckart, et al. (1995) in the Galactic Center Cluster.

2. Green’s functions
2.1. Construction of equations

We are concerned with problems for which the solution, ¢, is either symmetric or anti-
symmetric about the centreline of the waveguide, y = 0. The first step is the construction
of a symmetric and an antisymmetric Green’s function, G4(P, Q) and G, (P, Q). Thus we
require

(V24 k)G = (V2 + k)G, =0 (2.1)
in the fluid, where V is a gradient operator,

V.v=0, V?*P=V.(vxuw).

In (2.1)
Gs,Go ~1/2m)Inr as r=|P-Q|—0, (2.2)
0Gs  0G,
= = = 2.
9 oy 0 on y=d, (2.3)
68628 =0 on y = 0, (24)
G,=0 on y=0, (2.5)

and we require G5 and G, to behave like outgoing waves as |z| — oo.
One way of constructing G or G, is to replace (2.1) and (2.2) by
(V2 +k*)Gs = (V2 + k*)Ga = —6(z — €)d(y —n) (2.6)

and to assume initially that k& has a positive imaginary part.

2.2. Further developments
Using results from Linton & Evans (1992) we see that this has the integral representation
1 [ :
“o ), y e Ryl o=k 2d=y=m)] cos k(2 — €)t dt, O<y, n<d, (2.7

where
(1) = —i(1 -2, t<1
TWEY @02, >



short title of paper 121
In order to satisfy (2.4) we add to this the function

1 [ cosh ky(d — y)
_— B(t)— 12— )
27 J, ~sinh kyd

which satisfies (2.1), (2.3) and obtain
B(t) = 2e ¥ cosh kvy(d — ). (2.8)

cosk(z — &)t dt

Thus the function

) 1 [ e kv
G = —%I(Ho(kr) + Ho(k’l“l)) — % ]{ m cosh k’y(d — y) cosh k’y(d — ’l]) (29)
satisfies (2.1)—(2.4). By writing this function as a single integral which is even in 7, it
follows that G is real. Similar ideas have been developed in a variety of ways (Keller
1977; Rogallo 1981; van Wijngaarden 1968).

3. The trapped-mode problem
The unit normal from D to 8D is n, = (—y'(0),2'(9))/w(f). Now G, = 1Yy (kr) + G,

where r = {[z(8) — 2(¥)]> + [y(0) — y()]*}*/? and G, is regular as kr — 0. In order to
evaluate 0G,(6,6)/0n, we note that

o (430(00) ~ 5o (g tnr) = g O(6) ~ () ~ 1 O)a(6) = a(w)]
as kr — 0. Expanding z(¢)) and y(v) about the point ¢ = 6 then shows that
o (1¥3(00) ~ sl O 6) = 0)2'(0)
= 47[1013(9) [0 (0)p"(0) — p°(8) —2p”(0)] as kr—0. (3.1)

3.1. Computation

For computational purposes we discretize (3.1) by dividing the interval (0,7) into M
segments. Thus we write

M
s 0
30(0) = 37 2 00 5 -Ca(:6) ), 0<¥ <, (32)
j=1
where §; = (j — )mt/M. Collocating at ¢ = 6; and writing ¢; = ¢(6;) etc. gives
oM
1o = MZ¢J‘K%UJ]', i=1,..., M, (3.3)
j=1
where
0G4(0;,0;)/0ng, £ g
quj: N( i)/ 0ng 27&] (3.4)
0Ga(0:,6:)/0ng + [pipi — pi — 2p7]/4mwi, i =j.

For a trapped mode, therefore, we require the determinant of the M x M matrix whose
elements are
2n
6ij — MK%’LU]‘,
to be zero. Table 1 shows a comparison of results obtained from this method using two
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Table 1. Values of kd at which trapped modes occur when p(6) = a
afd M =4 M=8 Callan et al.

0.1 1.56905  1.56 1.56904
0.3  1.50484  1.504 1.50484
0.55 1.39128  1.391 1.39131
0.7  1.32281 10.322 1.32288
0.913 1.34479 100.351 1.35185
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Figure 1. Trapped-mode wavenumbers, kd, plotted against a/d for three ellipses:
77777 ,b/a=0.5; ,bjla=1,—— b/a=15.

different truncation parameters with accurate values obtained using the method of Callan
et al. (1991).

An example of the results that are obtained from our method is given in figure 1.
Figure 2 (a,b) shows shaded contour plots of ¢ for these modes, normalized so that the
maximum value of ¢ on the body is 1. Symmetric (figure 2a) modes are shown, while
the antisymmetric ones appear in figure 2(b).

3.2. Basic properties
Let

=27 (z) C—=ZF(2)

be the fluid densities immediately below and above the cat’s-eyes. Finally let po and Ny
be the constant values of the density and the vorticity inside the cat’s-eyes, so that

(p(@,Q), bec(w,0)) = (po, No) for  Zi(x) < ¢ < Zu(z). (3.6)

The Reynolds number Re is defined by u, H/v (v is the kinematic viscosity), the length
given in wall units is denoted by ( )4, and the Prandtl number Pr is set equal to 0.7. In
(2.1) and (2.2), 7;; and 7! are

Tij = (Wit — witty) + (W95 + uf95;) + up@Sufes, (3.7a)

;

7 = (w;0 — w;0) + (w0595 + uf950) + u7C9G5GS, (3.7b)

3.2.1. Calculation of the terms

The first terms in the right-hand side of (3.5a4) and (3.5b) are the Leonard terms
explicitly calculated by applying the Gaussian filter in the z- and z-directions in the
Fourier space.

The interface boundary conditions given by (2.1) and (2.2), which relate the displace-
ment and stress state of the wall at the mean interface to the disturbance quantities of the
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Figure 2. Shaded contour plots of the potential ¢ for the two trapped modes that exist for an
ellipse with a/d = 1.5, b/d = 0.75. (a) Symmetric about = = 0, kd = 0.96; (b) antisymmetric
about x = 0, kd = 1.398.

flow, can also be reformulated in terms of the transformed quantities. The transformed
boundary conditions are summarized below in a matrix form that is convenient for the
subsequent development of the theory:

—w2V —(atw)™! 0 0 0
p .
mvulj 0 0 0 1w 1
iw™! 0 0 0 0
Qo = 3.8
¢ iRy (o' +w V) 0 —(ia!Rg) ™1 0 0 38
i8
@Rélvgj 0 0 0 0
(ia)71V),  (BR;' +ct(iat)™Y) 0 —(a))2R;' 0 |

S is termed the displacement-stress vector and Q¢ the flow-wall coupling matrix. Sub-
script w in (3.8) denotes evaluation of the terms at the mean interface. It is noted that
V. = 0 for the Blasius mean flow.

3.2.2. Wave propagation in anisotropic compliant layers

From (2.1), the fundamental wave solutions to (3.1) and (3.2) for a uniformly thick
homogeneous layer in the transformed variables has the form of

n' = it explila’a! —wi)], (3.9)

where 7t = bexp(iyzt). For a non-trivial wave, the substitution of (1.7) into (1.3) and
(1.4) yields the following determinantal equation:

Det[pw?d,s — C! . kLEL] =0, (3.10)

pgrsUq'r

where the wavenumbers (k!, k%, kL) = (at,0,7) and d,, is the Kronecker delta.

4. Torus translating along an axis of symmetry

Consider a torus with axes a,b (see figure 2), moving along the z-axis. Symmetry
considerations imply the following form for the stress function, given in body coordinates:

f(6,9) = (9(¢) cos 0, g(¢) sin 6, f(¢)). (4.1)

Because of symmetry, one can integrate analytically in the #-direction obtaining a pair
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of equations for the coefficients f, g in (4.1),

B 3b 27 (sinth; — sin))(a + beostp)'/?

R e Ml e e T
. 3 2T (a+bcost 1/2
g(1) = m2(a + beos )32 /0 <2+—a> {f(d’)[(coslbl —bB1)S + 1P
sin 1), — sin (sint)y — sin)?

< sy o (2 e TEETEET o) s

+ (b2 cos P17y — %oz) F(m,8) — (2+ a) cos vy E(im, 5)] } dep, (4.3)
_ _ Vl-cos®@-y1)] B _ 1—cos(y =)

a=alpt) = (a+bcostp)(a+ bcosthy)’ B=BWv) = a+bcosy (44)

5. Conclusions

We have shown how integral equations can be used to solve a particular class of prob-
lems concerning obstacles in waveguides, namely the Neumann problem for bodies sym-
metric about the centreline of a channel, and two such problems were considered in
detail.

Appendix A. Boundary conditions

It is convenient for numerical purposes to change the independent variable in (4.1) to

z=y /17;/ * and to introduce the dependent variable H(z) = (f —§)/ 17;/ ?. Equation (4.1)
then becomes

(1-B)H+2zH"-2+H)H =H". (A1)
Boundary conditions to (4.3) follow from (4.2) and the definition of H:

HO0) = o H(0) = 14T, + e
o1 - B) a2
" €ui 1

Ur Uup

Appendix B

A simple sufficient condition for the method of separation of variables to hold for the
convection problem is derived. This criterion is then shown to be satisfied for the ansatz
described by (3.27), thus justifying the approach used in § 3. The basic ingredient of our
argument is contained in the following estimate for a Rayleigh—Ritz ratio:

LEMMA 1. Let f(z) be a trial function defined on [0,1]. Let Ay denote the ground-state
eigenvalue for —d?g/dz? = Ag, where g must satisfy +dg/dz + ag = 0 at z = 0,1 for
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some non-negative constant . Then for any f that is not identically zero we have
1 2
d
a0+ £+ [ (E) e
o \dz

/01 f2dz

Before proving it, we note that the first inequality is the standard variational charac-
terization for the eigenvalue A;.

> M

\Y%

(—a +(a® + 8n2a)1/2)2

in (B1)

COROLLARY 1. Any non-zero trial function f which satisfies the boundary condition

F(0) = f(1) = 0 always satisfies
1 2
/0 <%> dz. (B2)
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Discussion

MAssey: Im wondering if you have considered the expected intrinsic dispersion in ab-
solute magnitude of WRs — if you consider the (large) mass range that becomes an
early WN or late WC according to the evolutionary models, wouldnt you expect a large
dispersion in M,?

VAN DER HUCHT: Indeed, we will be always left with some intrinsic scatter in M,, due to
mass differences within the same spectral subtype. But in my opinion, the current large
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dispersion is for a large fraction due to incertainties of the adopted distances of open
clusters and OB associations.

WALBORN: I think that the scatter in WNL absolute magnitudes is dominated by intrinsic
spread rather than errors. In the LMC, one finds a range of 5 to nearly 8. This in
turn likely reflects different formation channels: mass-transfer binaries, post-RSG, and
extremely massive stars in giant H II regions.

VAN DER HUCHT: As said above, there is likely to be intrinsic scatter. But, I wonder
whether a scatter of 3 magnitudes perhaps reflects undetected multiplicity.

MAfz-APELLANIZ: I could not agree more with your comment on the need for an updated
catalogue of O-type stars (as a follow up of that of Garmany et al. 1982). We are currently
working on precisely that (see our poster, these Proceedings) and we will soon make it
available.

VAN DER HucHT: Wonderful.

KOENIGSBERGER: Is the ratio WR/O-stars in clusters similar or different from this ratio
for the field stars?

VAN DER HUCHT: I think it is different because incompleteness among field stars is even
larger than that among cluster stars. But perhaps it should also be different because WR
stars are older and could have drifted away from clusters, more than O-type stars.

GIEs: How many of the WR stars in your catalogue might be low mass objects?
WALBORN: Comment: PN central stars in the WR sample would be only [WC].

VAN DER HUCHT: Among the WR stars in our VIIth Catalogue we doubt only one:
WRI109 (V617 Sgr), which is a peculiar object (not even a [WR] central star of a PN).
All other stars in our cataloge are true massive Population I WR stars, and properly
classified as such. We have not listed known Population II [WC] objects, as we did
separately in our VIth Catalogue (van der Hucht et al. 1981). [WN] objects are not
known to exist, see the comment by Nolan.

ZINNECKER: Are all Galactic WR stars in open clusters and OB association or are there
many WR stars in the field?

VAN DER HUCHT: See the VIIth WR catalogue (van der Hucht 2001): of the listed 227
Galactic WR stars, only 53 are in open culsters and OB associations, or believed to be.
The other 184 are supposedly field stars.



