

The Third Realization of the International Celestial Reference Frame

Patrick Charlot

Laboratoire d'Astrophysique de Bordeaux

IAU Working Group formed in 2012 to generate ICRF3 for presentation at IAU 2018 General Assembly

P. Charlot (Chair)	A. L. Fey	Z. Malkin
E. F. Arias	R. Gaume	A. Nothnagel
D. Boboltz	D. Gordon	M. Seitz
J. Boehm	R. Heinkelmann	E. Skurikhina
S. Bolotin	C. S. Jacobs	J. Souchay
G. Bourda	S. Lambert	O. Titov
A. de Witt	C. Ma	

2012-2015: WG chaired by C. S. Jacobs 2015-2018: WG chaired by P. Charlot

XXXth IAU General Assembly - Vienna - 27 August 2018

VAU

Outline

- Background on ICRF2
- Data sets incorporated in ICRF3
- Modeling and analysis configuration
- Overview of ICRF3 and its properties
- Comparison with ICRF2 and Gaia-CRF2
- Consistency of multi-frequency positions
- Release of ICRF3

- ICRF2 built in 2009
- Adopted by IAU at XXVIIth General Assembly (Rio de Janeiro, 2009)
- Has 3414 sources, of which 295 are defining sources
- Noise floor in individual source coordinates: 40 µas
- About 2/3 of the sources result from single-epoch survey observations and have much lower position accuracy

Data sets: S/X band (2.3/8.4 GHz)

- 6206 sessions incorporating 2 to 20 IVS telescopes (1979-2018)
- 128 sessions also incorporating the 10 VLBA telescopes
- > 24 VCS-I sessions* (1994-2007)
- > 8 VCS-II sessions (2014-2015)
- > 24 additional VCS-type sessions under USNO time (2017-2018)

* VCS=VLBA Calibrator Survey

Data sets: K band (24 GHz)

Very Long Baseline Array (VLBA)

Hartebeesthoek-Hobart observations

> 40 VLBA sessions (2002-2018)

 > 16 South-Africa–Australia singlebaseline sessions (2014-2018)

Deep Space Network + ESA antenna in Argentina

167 sessions using DSN antennas and occasionally (~10% of the sessions) the ESA antenna in Malargue (2005-2018)

XXXth IAU General Assembly - Vienna - 27 August 2018

- Three rounds of ICRF3 prototype solutions accomplished
 - Submitted by 09/2016, 07/2017 and 01/2018
 - 9 solutions (using 6 different software packages) produced each time
 - One such solution provided to the Gaia Science Team in July 2017 to serve as input for defining the orientation of Gaia-CRF2 frame.
- Numerous alternate solutions varying the modeling and analysis configuration to assess the impact on the solutions
 - Cutoff elevation angle, troposphere modeling, station positions
 - Special handling sources, ICRF2-ICRF3 transfer sources
 - Impact of new southern-hemisphere stations in Australia and NZ
 - Treatment of Galactic aberration
- Extensive comparisons between different solutions (also with Gaia DR1 and DR2) essential to identify and resolve issues
- Individual solutions from GSFC adopted for the SX and K band frames and from JPL for the XKa band frame

XXXth IAU General Assembly - Vienna - 27 August 2018

VAU Modeling and analysis configuration

- Adhere to IERS conventions (2010)
- Ionospheric corrections (K band data) using TEC maps from GPS
- Celestial frame
 - All sources treated as global parameters
 - SX frame aligned onto ICRF2 using the 295 ICRF2 defining sources
 - K and XKa frames aligned onto SX frame using ICRF3 defining sources
- Terrestrial frame and EOP
 - Terrestrial frame aligned onto ITRF2014
 - Station coordinates treated as global parameters
 - EOP estimated per session
- Galactocentric acceleration correction of 5.8 µas/yr applied (estimated from the SX data) – Positions given for epoch 2015.0
- Rescaling of formal position uncertainties
 - Multiplicative factor of 1.5 applied to SX and K band coordinate errors
 - > 30 µas added in quadrature to α^* and δ errors (50 µas for δ at K band)

Comparison of the Earth Orientation Parameters estimated as part of the ICRF3 solution with those reported by IVS

EOP	ур (µas)	ур (µas)	UT1 (µs)	X (µas)	Y (µas)
Median error (ICRF3)	61	56	2.6	55	56
wrms (ICRF3-IVS)	76	79	6.1	45	44
χ²	2.18	2.43	2.56	1.01	0.98

→ Very good consistency with the IVS series

XXXth IAU General Assembly - Vienna - 27 August 2018

XXXth IAU General Assembly - Vienna - 27 August 2018

ICRF3-K and ICRF3-XKa

XXXth IAU General Assembly - Vienna - 27 August 2018

→ Identify the most compact and stable source in each sector and select it as defining source

 Examine VLBI images and categorize sources depending on their structure (size, variability, structure index,..)

> A = good or excellent

C = poor structure

B = with extended structure

Sub-divide the celestial sphere into

324 sectors of equal area

Selection of defining sources

14

ICRF3 defining sources

216 sectors with a class A source	72%
62 sectors with a class B source	20%
19 sectors with only class C sources	removed
25 sectors with structure not assessed (no images)	8%
2 sectors with no ICRF3 source	< 1%

303 defining sources

Some class A defining sources

VLBI images at 8.4 GHz from the Bordeaux VLBI Image Database

Contour levels: ± 1, 2, 4, 8, 16, 32, 64% of peak brightness

Image size: 15 x 15 mas

XXXth IAU General Assembly - Vienna - 27 August 2018

P. Charlot

344

Model for comparing frames

$$\begin{aligned} \Delta \alpha \cos \delta &= (R_1) \cos \alpha \sin \delta + (R_2) \sin \alpha \sin \delta + (R_3) \cos \delta + (D_1) \sin \alpha + (D_2) \cos \alpha \\ &+ (a_{21}^{E_1 Re} \sin \alpha + (a_{21}^{E_1 Im} \cos \alpha)) \sin \delta \\ &- (a_{21}^{M_1 Re} \cos \alpha - (a_{21}^{M_1 Im} \sin \alpha)) \cos 2\delta \\ &- 2 (a_{22}^{E_2 Re} \sin 2\alpha + (a_{22}^{E_2 Im} \cos 2\alpha)) \cos \delta \\ &- (a_{22}^{M_1 Re} \cos 2\alpha - (a_{22}^{M_1 Rm} \sin 2\alpha)) \sin 2\delta, \\ \Delta \delta &= (R_1) \sin \alpha + (R_2) \cos \alpha - (D_1) \cos \alpha \sin \delta - (D_2) \sin \alpha \sin \delta + (D_3) \cos \delta \\ &+ (a_{20}^{E_1 Re} \cos \alpha - (a_{21}^{E_1 Rm} \sin \alpha)) \cos 2\delta \\ &- (a_{21}^{E_1 Re} \cos \alpha - (a_{21}^{E_1 Rm} \sin \alpha)) \cos 2\delta \\ &- (a_{21}^{E_1 Re} \cos \alpha - (a_{21}^{E_1 Rm} \sin \alpha)) \cos 2\delta \\ &- (a_{21}^{E_1 Re} \sin \alpha + (a_{21}^{M_1 Rm} \cos \alpha)) \sin \delta \\ &- (a_{22}^{E_1 Re} \sin \alpha + (a_{22}^{M_1 Rm} \cos \alpha)) \sin 2\delta \\ &+ 2 (a_{22}^{M_1 Re} \sin 2\alpha + (a_{22}^{M_1 Rm} \cos 2\alpha)) \cos \delta \end{aligned}$$

XXXth IAU General Assembly - Vienna - 27 August 2018

Deformations between frames

ICRF3-SX vs ICRF2

ICRF3-SX vs Gaia-CRF2

- Existence of significant glide parameters D2 and D3 and quadrupole term E20 between ICRF3-SX and ICRF2
- No significant deformations between ICRF3-SX and Gaia CRF2

XXXth IAU General Assembly - Vienna - 27 August 2018

Deformations ICRF3-SX vs ICRF2

Impact of VLBI software packages and analyst choices

- Seven ICRF3-SX variants produced from different VLBI software packages or analysts
- \succ All show similar deformations in D2, D3 and E20.

XXXth IAU General Assembly - Vienna - 27 August 2018

Deformations ICRF3-SX vs ICRF2

Impact of modeling Galactocentric acceleration

- Three ICRF3-SX variants produced by changing the catalog epoch (2000.0 or 2015.0) or not incorporating Galactocentric acceleration
- Incorporation of Galactocentric accelerration or changing the catalog epoch has a significant impact on the glide parameters D2 and D3.

XXXth IAU General Assembly - Vienna - 27 August 2018

Deformations ICRF3-SX vs ICRF2

ICRF3-SX vs ICRF2 (reproduced

with GA modeled at epoch 2015.0)

ICRF3-SX vs ICRF2 (reproduced)

Reproducing ICRF2 and modeling Galactocentric acceleration annihilates the D2 term and reduces the bias in D3 by 50%

XXXth IAU General Assembly - Vienna - 27 August 2018

Deformations: SX vs K and XKa

SX vs K

SX vs XKa

- > No significant deformation between the SX band and K band frames
- Existence of significant deformation of the X/Ka frame (D3, E20, M20) originating from the limited (North-South) geometry of the network

XXXth IAU General Assembly - Vienna - 27 August 2018

VAU Consistency of multi-frequency positions

SX vs K

SX vs XKa

SX vs Gaia-CRF2

XXXth IAU General Assembly - Vienna - 27 August 2018

VAU

- ICRF3 endorsed by IVS and IERS
- ICRF3 released on 20 August 2018
- ICRF3 presented to IAU for adoption through resolution B2 (replacement of ICRF2 as of 1 January 2019)
- ICRF3 paper to be submitted in September

Astronomy & Astrophysics manuscript no. icrf3 August 29, 2018 ©ESO 2018

The Third Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

P. Charlot¹, C. S. Jacobs², D. Gordon³, S. Lambert⁴, A. de Witt⁵, J. Böhm⁶, A. L. Fey⁷, R. Heinkelmann⁸, E. Skurikhina⁹, O. Titov¹⁰, E. F. Arias⁴, S. Bolotin³, G. Bourda¹, C. Ma³*, Z. Malkin^{11, 12}, A. Nothnagel¹³, D. Mayer⁶, D. S. MacMillan³, T. Nilsson⁸, and R. Gaume¹⁴

- ¹ Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France e-mail: patrick.charlot@u-bordeaux.fr
- ² Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA
- ³ National Aeronautics and Space Administration, Goddard Space Flight Center, Code 698, Greenbelt, MD 20771, USA
- ⁴ SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 Avenue de l'Observatoire, 75014 Paris, France
- ⁵ Hartebeesthoek Radio Observatory, PO Box 443, Krugersdorp 1740, South Africa
- ⁶ Department of Geodesy and Geoinformation, Technische Universität Wien, Karlsplatz 13, 1040 Vienna, Austria

Thank you for your attention

Many thanks to the ICRF3 Working Group members for the team work accomplished during the past 6 years