Gaia DR2 astrometry

L. Lindegren¹ J. Hernández² A. Bombrun² S. Klioner³ U. Bastian⁴ M. Ramos-Lerate² A. de Torres² H. Steidelmüller³ C. Stephenson² D. Hobbs¹ U. Lammers² M. Biermann⁴

¹Lund Observatory, Lund
 ²European Space Agency/ESAC, Madrid
 ³Lohrmann Observatorium, Dresden
 ⁴Astronomisches Rechen-Institut, Heidelberg

IAU 30 GA – Division A: Fundamental Astronomy Vienna, 2018 August 27

lennart@astro.lu.se

- A18 F. Arenou et al. (2018): Gaia DR2: Catalogue validation (link)
- L18 L. Lindegren et al. (2018): Gaia DR2: The astrometric solution (link)
 - + New material

An extended version of this presentation is on the ESA web page

 $\label{eq:Gaia} \begin{array}{l} \textbf{Gaia} \rightarrow \textbf{Gaia} \ \textbf{Data} \rightarrow \textbf{Data} \ \textbf{Release} \ \textbf{2} \rightarrow \textbf{Known} \ \textbf{issues:} \\ \texttt{www.cosmos.esa.int/web/gaia/dr2-known-issues} \end{array}$

- Quality indicators
- Spurious and anomalous parallaxes
- 4 Conclusions and outlook

An extended version of this presentation is on the ESA web page

 $\label{eq:Gaia} \begin{array}{l} \textbf{Gaia} \rightarrow \textbf{Gaia} \ \textbf{Data} \rightarrow \textbf{Data} \ \textbf{Release} \ \textbf{2} \rightarrow \textbf{Known} \ \textbf{issues:} \\ \texttt{www.cosmos.esa.int/web/gaia/dr2-known-issues} \end{array}$

Regimes of G:

- A: Too bright
- B: Partly saturated (unreliable)
- C: Detector and calibration limited

daia

- D: Photon limited
- E: Too faint (not published)

Regimes of G:

- A: Too bright
- B: Partly saturated (unreliable)
- C: Detector and calibration limited
- D: Photon limited
- E: Too faint (not published)

Formal uncertainties in *Gaia* DR2 were estimated from the internal consistency of measurements and do not represent the total error

A useful model for the total (external) error in parallax for source i is

$$\varpi_i^{\mathsf{DR2}} - \varpi_i^{\mathsf{true}} = r_i + s(\alpha, \delta, G, C, \dots)$$
(1)

Random error r_i :

- On average zero, uncorrelated between different sources
- Formal uncertainty σ_i is a (possibly underestimated) estimate of its standard deviation: σ_r = kσ_i with correction factor k ≥ 1.0

Systematic error *s*:

- May depend on several variables (position, magnitude, colour, ...)
- Same for sources with sufficiently similar position, magnitude, etc
- $\bullet\,$ Mean value is the parallax zero point ϖ_0
- Variance is σ_s^2

In this model the external (total) uncertainty becomes

(

$$\sigma_{\rm ext} = \sqrt{k^2 \sigma_i^2 + \sigma_s^2} \tag{2}$$

- Astrophysical applications using likelihood or Bayesian methods require the probability density of the total error $e_i = \varpi_i^{\text{DR2}} \varpi_i^{\text{true}}$
- Most conservative assumption: e_i is Gaussian with mean value ϖ_0 and standard deviation σ_{ext}

External data must be used to "calibrate" the model by estimating ϖ_0 , k and σ_s (see next slides)

Values may depend on the sample used

Gaia

The zero point ϖ_0 is the expected measured parallax for a source at infinity; it should thus be *subtracted* from the catalogue value.

As a global average, $arpi_0\equiv\langle s
angle\simeq-0.03$ mas, but:

- s definitely depends on (α, δ)
- s probably depends of G
- s may depend of $C = G_{BP} G_{RP}$
- the dependence is probably multivariate, $s(\alpha, \delta, G, C, ...)$

No general recipe can be given for the correction of the zero point

Systematics $s(\alpha, \delta)$ on large scales

QSO parallaxes smoothed by a Gaussian beam ($\sigma = 3.7^{\circ}$) (only $|\sin b| > 0.2$ shown)

Mean value = -0.030 mas, RMS of smoothed values = 0.020 mas

^{Gaia} PAC

gaia

Quasi-periodic patterns imprinted by the Gaia scanning law

Galactic bulge area

Large Magellanic Cloud

Characteristic period $\simeq 0.6$ deg, RMS variation $\simeq 0.02\text{--}0.04$ mas

(A18, Figs. 12-13)

daia

Gaia

Spatial covariance function $V_{\varpi}(\theta)$

- V_w(θ) is a statistical description of the systematic error s(α, δ,...) on different scales, equivalent to an angular power spectrum
- The total variance is $V_{\varpi}(0) = \sigma_s^2$, from which $\sigma_s = 0.043$ mas
- V_w(θ) and V_μ(θ) make it possible to estimate the systematic uncertainty of the mean parallax or proper motion of a cluster (see the extended version for details)

Gaia

Parallax systematics vs. magnitude

A more negative zero point may apply to sources brighter than the QSOs

Lindegren et al., 2018 Aug 27

k and σ_s estimated from $\sigma_{\text{ext}}/\sigma_i$ vs. G:

Quasars (blue):

k=1.08 $\sigma_s=0.043$ mas

Bright stars (red): k = 1.08 (assumed) $\sigma_s = 0.021$ mas

The model may be too pessimistic for $G \simeq 13$ to 15

gaia

Main points:

- Systematics exist on large and small scales similar to the parallax
- For faint sources the reference frame is effectively non-rotating
- $\bullet\,$ For $\,G\lesssim 12$ the proper motions have a significant (${\sim}0.15\,\,{\rm mas}\,\,{\rm yr}^{-1})$ rotation bias

For details see the extended version at www.cosmos.esa.int/web/gaia/dr2-known-issues

Quality indicators for the astrometry

- Precision: parallax_error, pmra_error, pmdec_error, etc. \rightarrow OK
- Reliability: visibility_perods_used (\geq 6 for full solutions) ightarrow OK
- Consistency (goodness of fit to the 5-parameter model):
 - > astrometric_n_bad_obs_al
 - > astrometric_gof_al
 - > astrometric_chi2_al
 - > astrometric_excess_noise
 - > astrometric_excess_noise_sig

 \rightarrow not recommended

Gaia

- Recommended GoF indicator for Gaia DR2 astrometry
- Not given directly in the Gaia Archive
- Can be computed from the quantities:

$$\chi^2 = astrometric_chi2_al$$

 $N = astrometric_n_good_obs_al$
 $G = phot_g_mean_mag$
 $C = bp_rp$ (if available)

- Unit weight error UWE = $\sqrt{\chi^2/(N-5)}$
- Renormalised unit weight error $RUWE = UWE/u_0(G, C)$
- $u_0(G, C)$ is an empirical normalisation factor, provided as a lookup table on the ESA *Gaia* DR2 Known issues page

This is essentially the "typical" UWE for a given magnitude and colour

Limits chosen to retain the same number of sources Filtering by RUWE gives a cleaner HRD Blue dots are sources missing in the left diagram

Gaia AC

Gaia DR2 contains some parallaxes that are horrendously wrong

Source ID	G	parallax	RUWE
4062964299525805952	19.63	1851.88 ± 1.29	1.44
4065202424204492928	19.88	1847.43 ± 1.87	1.01
4051942623265668864	19.35	1686.27 ± 1.47	1.63
4048978992784308992	19.78	1634.28 ± 1.97	1.50
:	:	:	÷
4089303169338901632	20.35	-1621.17 ± 1.83	0.92
4059697925504813440	20.76	-1706.70 ± 1.99	1.17
4052499285375616384	20.00	-1787.00 ± 1.45	1.24
4090728411324689792	20.00	-1856.58 ± 2.72	1.72

The really big errors (> 1'') are probably cross-matching errors causing spurious parallax solutions – these are typically faint sources

In the HRD most sources between blue lines have parallax errors >10 mas

Sources with anomalous parallaxes (wrong by ± 10 to ± 100 mas) are usually partially resolved doubles ($\rho \simeq 0.2-1''$, $\Delta G < 2$ mag) \Rightarrow need dedicated processing (future releases)

- This talk focused on peculiarities and deficiencies in Gaia DR2
- Knowing about them will help users make optimum use of the data
- Conversely, feedback from users will help us to understand the data
- Future releases will benefit from the accumulated insight

This should not obscure the tremendous advances made:

Gaia DR2 = A giant leap for astronomy!

Formal uncertainty in parallax

For more information please check the extended version at ESA Gaia \rightarrow Gaia Data \rightarrow Data Release 2 \rightarrow Known issues www.cosmos.esa.int/web/gaia/dr2-known-issues