Implications of the enthalpy flux carried by powerful quasar jets*

Dan Schwartz
Smithsonian Astrophysical Observatory

H. Marshall, MIT; D. Worrall, M. Birkinshaw, U. Bristol; E. Perlman, FIT; J. Lovell, U. Tasmania; D. Jauncey, CISRO; D. Murphy, NASA/JPL; J. Gelbord, PSU; L.. Godfrey, ASTRON; G. Bicknell, ANU

XXIX IAU GA: Accretion on all Scales
7 Aug 2015

Relativistic Jet Power: Why we care

1. Enthalpy flux of jets can reverse the cooling flow catastrophe in clusters of galaxies

2. Jet power significant in black hole energy budget – indicates available energy which may be manifested in other channels (e.g., winds)

3. Comparable or greater than the black hole luminosity: supports calculations of super Eddington accretion & rapid growth at large redshift.
Power: aka kinetic flux, Enthalpy Flux

Definition*: $\Gamma^2 \times \text{velocity} \times \text{Area} \times \text{Density of \{Relativistic enthalpy + Poynting flux – rest mass\}}$

$$= \Gamma^2 \beta c \text{ Area } \left[2B^2/8\pi + (1-1/\Gamma)(1+k_2) \rho c^2 \right]$$

X-ray observations of kpc scale jets allow us to estimate B and Γ

- For relativistic jets
- Inverse Compton scattering the CMB

IC/CMB interpretation

Extension of the radio-emitting synchrotron electrons to lower energy produces IC x-rays by scattering off the Γ^2 enhanced CMB

Relativistic jet $\delta = 1/(\Gamma (1-\beta \cos \theta))$

Cannot solve for all three quantities Γ, δ, and θ

1. Use $\Gamma = \delta$
2. Set Γ = some number
3. Parameterize as a function of θ

Relate B to the relativistic particle density via minimum energy

Usual assumptions of uniformity, isotropy in rest frame, electron cutoff below $\gamma_{min} = 30$, $r_{jet} = 2kpc$, are there p or e^+?

Proton energy = electron energy

Supersnapshot transformation: Volume = $V_{obs}/(\delta \sin \theta)$

Felten-Morrison (’66) IC formulas give combination of δ & Γ
Comparison of Proton (orange) and Positron (blue) jets, for $\Gamma = \delta$
Γ = δ (triangles) gives reasonable results for enthalpy flux.

Power vs. angle to line of sight, for δ ≠ Γ
X-ray Jets, $\delta=\Gamma$

- Left graph: Enthalpy Flux (10^{46}) vs. Radiative Luminosity
- Right graphs: X-ray Jets with Protons and Positrons, $\delta=\Gamma$

- X-ray Jets with Protons: Black Hole Mass [$10^8 M_\odot$] vs. Luminosity
- X-ray Jets with Positrons: Black Hole Mass [$10^8 M_\odot$] vs. Luminosity
Summary
X-ray jet results from a Chandra Quasar Survey

Jet Enthalpy flux ~ bolometric radiation of quasar

Assuming $\Gamma = \delta$ gives reasonable results for B, electron density, enthalpy flux, lengths and Lorentz factors for the survey properties

Jets are at small angles to line of sight, ≤ 10 degrees

Kinetic flux $5-10 \ E46 \ erg/s$ for proton jets, $1-2 \ E46$ for $e^{+/-}$ jets, for minimum energy conditions