A Local Reference for Bar Studies in the Distant Universe
Bar Properties as a function of wavelength

Karín Menéndez-Delmestre
Observatório do Valongo
Universidade Federal do Rio de Janeiro

Kartik Sheth (NRAO), Tomás Düringer (Valongo), Cameron Charness (UVA) & the S4G Team

S4G Core: Armando Gil de Paz, Joannah Hinz, Juan Carlos Muñoz-Mateos, Mike Regan, Mark Seibert, KMD, KS
Why do we care about bars?

Disks like forming bars!
- A galaxy disk will naturally form a bar in a couple of Gyrs unless it is dynamically hot or is dominated by dark matter (Athanassoula+)
- The presence of a bar allows us to gauge disk “maturity”

Bars transform their hosts!
- The gas transport triggered by a bar can affect significantly its host
 - wash out metallicity gradient across galaxy (Martin & Roy 2004; but Sánchez-Blázquez+11 (e.g., Sheth+05)
 - central accumulation of molecular gas
 - triggering nuclear starbursts
 - leading to the formation of pseudobulges (e.g., Kormendy & Kennicutt 04)
 - perhaps even feeding an AGN
Morphological classification of local galaxies – it all started in the optical...

- Morphological classification of galaxies in the optical
 - ~2/3 of spirals are barred (de Vaucouleurs+63)
Morphological classification of local galaxies – look in the infrared!

• Morphological classification of galaxies in the optical
 → ~2/3 of spirals are barred (de Vaucouleurs+63)
• Case studies in the IR showed bars unseen in the optical
 – IR traces old, low-mass stars
 – Bars are dominated by old stars

→ Are all galaxies barred and we just need to look in the IR?

IAU 2015, Galaxies Division Meeting

Karín Menéndez-Delmestre
The quest for the bar fraction

• The *Two-Micron All-Sky Survey* (2MASS; Skrutskie+05)
 – Large Galaxy Atlas (LGA; Jarrett+03)
 • > 500 large (~2’ to 2°) galaxies
 • J, H, Ks
 – The bar fraction stays constant across wavelengths from optical to near-IR
 (e.g., Menéndez-Delmestre+07)

 – Why is this interesting?
 • We can trace the evolution of the bar fraction with redshift (→ disk maturity!), safe from band-shifting effects!
Redshift Evolution of the Bar Fraction

![Graph showing the bar fraction evolution with redshift](image)

[Based on HST restframe optical]

IAU 2015, Galaxies Division Meeting

Redshift Karín Menéndez-Delmestre
Redshift Evolution of the Bar Fraction:
Decreases beyond $z \sim 0.4$

@ $z=0$: 65%

@ $z=0.8$: 15%

[based on HST restframe optical]
The quest for bar characterization – do bars change over cosmic time?

- Band-shifting from near-IR to optical does not hamper (significantly) the ability to **recognize** bars

→ So we can trace the evolution of the bar fraction based on the huge amount of high-resolution optical imaging available (HST)

How about our ability to trace bar properties?

- Several studies have looked at bar properties locally (e.g., Erwin+05+13, Laurikainen+07, Gadotti+08, Hoyle+11)

<table>
<thead>
<tr>
<th>2MASS median bar:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $a_{\text{bar}} = 4.2\text{kpc}$</td>
</tr>
<tr>
<td>• $\epsilon_{\text{bar}} = 0.5$</td>
</tr>
</tbody>
</table>

Menéndez-Delmestre+07

IAU 2015, Galaxies Division Meeting

Karín Menéndez-Delmestre
The quest for bar characterization – do bars change over cosmic time?

• Band-shifting from near-IR to optical does not hamper (significantly) the ability to recognize bars

→ So we can trace the evolution of the bar fraction based on the huge amount of high-resolution optical imaging available (HST)

How about our ability to trace bar properties?

• Several studies have looked at bar properties locally (e.g., Erwin+05+13, Menéndez-Delmestre+07, Laurikainen+07, Gadotti+08, Hoyle+11)

• Although some studies on bar properties have ventured to higher redshifts (Barazza et al. 2009), band-shifting effects on the bar morphology have not been explored. (Q_b: Speltincx+08)
Bar Morphology at high z: need a local reference on how bar properties change with wavelength.

We look at bar properties as a function of waveband in a sample of 16 local barred spirals with deep multi-band imaging from UV–opt–IR, based on GALEX, SINGS and S^4G imaging.

NGC1097

Spitzer Survey of Stellar Structures in Galaxies (PI Kartik Sheth)
Legacy Survey of the Warm Spitzer Mission
IRAC 3.6/4.5um of >2300 local galaxies

http://s4g.caltech.edu

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
Bar Morphology at high z: need a local reference on how bar properties change with wavelength

mid-IR: optimal window for stellar structure → provides a “canonical measure” of bar properties

UV: explore band-shift out to z>0.8

Spitzer Survey of Stellar Structures in Galaxies
Legacy Survey of the Warm Spitzer Mission
IRAC 3.6/4.5um of >2300 local galaxies

http://s4g.caltech.edu

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
Measuring bar properties – our approach

- widely-used ellipse-fit technique

IAU 2015, Galaxies Division Meeting

Karín Menéndez-Delmestre

KMD+15
Bars properties: from optical through IR

- Based on SINGS ancillary B, R and S^4G 3.6μm IRAC/Spitzer images
- Angular resolution ~1-2"

IAU 2015, Galaxies Division Meeting

Karín Menéndez-Delmestre
Bars properties: from UV through IR

- Including GALEX NUV [2267 Å] and FUV [1516 Å]
 - To address high-z (z>0.8) studies based on optical imaging
 - Angular resolution ~6"

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
1st result: we lose bars in the UV_{rest}

- We lose \sim50% of all bars in the NUV/FUV bands

- Band shifting is an issue when going shortwards of the Balmer break (Sheth+08)

→ Studies of bars at high redshift – beware!

→ HST optical data beyond $z \sim 0.8$ traces emission bluewards of the Balmer break

IAU 2015, Galaxies Division Meeting

Karín Menéndez-Delmestre
2nd result: bars look thinner in bluer bands

- ε_{max} is higher in the optical bands, compared to the mid-IR

$\varepsilon_{\text{band1}}/\varepsilon_{\text{band2}} > 1$

→ Bar measured to be more elliptical in the bluer band
2nd result: bars look thinner in bluer bands

- ε_{max} is higher in the optical bands, compared to the mid-IR
- This result extends to the UV

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
2nd result: bars look thinner in bluer bands

- Driven by bulge sizes:
 - Bulge looks bigger in redder bands → smaller in the blue
 - Limits the size of the bar semi-minor axis
 → Bar looks thinner

Speltincx+08:
- Similar increase of ~25% in bar strength from H to B
 - OSUBSG survey
- Q_b: gravitational bar torque method
 - the maximum tangential force normalized by the radial force

The bluer the restframe band, the thinner the bar!

IAU 2015, Galaxies Division Meeting
Karín Menénédex-Delmestre
3rd result: bars look longer in bluer bands

- SMA where $\varepsilon = \varepsilon_{\text{max}}$ is larger in the optical bands, compared to the mid-IR

$$\frac{a_{\text{band1}}}{a_{\text{band2}}} > 1$$

→ Bar measured to be longer in the bluer band
3rd result: bars look longer in bluer bands

This result also extends to UV

The bluer the restframe band, the longer the bar!

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
3rd result: bars look longer in bluer bands

Star-forming knots at the end of bars become more prominent and drive maximum ellipticity out to larger radii.

The bluer the restframe band, the longer the bar!

IAU 2015, Galaxies Division Meeting
Karín Menéndez-Delmestre
3rd result: bars look longer in bluer bands

How significant? Comparable to reported differences with respect to:
- environment (e.g., Barazza+09)
- AGN content (e.g., Laurikainen+02)
- Hubble type (e.g., Menéndez-Delmestre+07)

\[\Delta l_{\text{bar, band-shifting}} \approx 20-30\% \text{ longer} \]

\[<\text{B} \rightarrow 3.6\mu m>: 13\% \]
\[<\text{NUV} \rightarrow \text{B}>: 9\% \]
Take away points…

• As we extend bar studies out to high redshifts, our single-band studies are inevitably subject to band-shifting effects:

 – We lose 50% of bars in the UV → need to stick to the red side of the Balmer break in order to reliably detect bars
 – Bars change in shape as we go bluer; even in the restframe opt:
 • *Bars look thinner*, due to apparent bulge size
 • *Bars look longer*, as star-forming knots become prominent
 – Need to consider this when comparing bar morphologies as a function of galaxy properties!
 – These band-shifting effects may affect the “ease” to detect bars

• Refraining from going bluer than B-band may be good enough to study bar fraction out to z~0.8… but not bar properties!
 – Need to correct for band-shifting effects even in the optical!